

 xhtml2pdf

 latest

 	Installation
	Usage
	Working with HTML
	Advanced concepts
	Https option
	Graphs in canvas
	Encryption and signing
	Signing pdf
	How To Use Watermarks
	How to run tests
	Reference	Supported @page properties and values
	Supported @frame properties:
	Supported CSS properties
	Create PDF
	Link callback
	Web applications
	Defaults
	Fonts
	Asian Fonts Support
	Arabic / Hebrew / Persian etc. Fonts Support
	Using Custom Fonts
	Using TFF files with the same face-name
	Outlines/ Bookmarks
	Table of Contents
	Tables
	Long cells
	Cell widths
	Headers
	Borders
	Images
	Size
	Position/ floating
	Barcodes
	Custom Tags
	Tag-Definitions	pdf:barcode
	pdf:pagenumber
	pdf:pagecount
	pdf:nexttemplate
	pdf:nextpage
	pdf:nextframe
	pdf:spacer
	pdf:toc
	pdf:language

	Release Notes
	Examples

 xhtml2pdf

 	
	Reference
	
 Edit on GitHub

Reference

Supported @page properties and values

Valid @page properties:

background-image
size
margin, margin-bottom, margin-left, margin-right, margin-top

Valid size syntax and values:

Syntax: @page { size: <type> <orientation>; }

Where <type> is one of:
a0 .. a6
b0 .. b6
elevenseventeen
legal
letter

And <orientation> is one of:
landscape
portrait

Defaults to:
size: a4 portrait;

Supported @frame properties:

Valid @frame properties.

bottom, top, height
left, right, width
margin, margin-bottom, margin-left, margin-right, margin-top

To avoid unexpected results, please only specify
two out of three bottom/top/height properties, and
two out of three left/right/width properties per @frame object.

Supported CSS properties

xhtml2pdf supports the following standard CSS properties

background-color
border-bottom-color, border-bottom-style, border-bottom-width
border-left-color, border-left-style, border-left-width
border-right-color, border-right-style, border-right-width
border-top-color, border-top-style, border-top-width
colordisplay
font-family, font-size, font-style, font-weight
height
line-height, list-style-type
margin-bottom, margin-left, margin-right, margin-top
padding-bottom, padding-left, padding-right, padding-top
page-break-after, page-break-before
size
text-align, text-decoration, text-indent
vertical-align
white-space
width
zoom

xhtml2pdf adds the following vendor-specific properties:

-pdf-frame-border
-pdf-frame-break
-pdf-frame-content
-pdf-keep-with-next
-pdf-next-page
-pdf-outline
-pdf-outline-level
-pdf-outline-open
-pdf-page-break

Create PDF

The main function of xhtml2pdf is called CreatePDF(). It offers the
following arguments in this order:

	src: The source to be parsed. This can be a file handle or a
String - or even better - a Unicode object.

	dest: The destination for the resulting PDF. This has to be a
file object wich will not be closed by CreatePDF. (XXX allow file
name?)

	path: The original file path or URL. This is needed to calculate
relative paths of images and style sheets. (XXX calculate
automatically from src?)

	link_callback: Handler for special file paths (see below).

	show_error_as_pdf: Boolean that indicates that the errors will
be dumped into a PDF. This is usefull if that is the only way to show
the errors like in simple web applications.

	default_css: Here you can pass a default CSS definition in as a
String. If set to None the predefined CSS of xhtml2pdf is
used.

	xhtml: Boolean to force parsing the source as XHTML. By default
the HTML5 parser tries to guess this.** DEPRECATED **

	encoding: The encoding name of the source. By default this is
guessed by the HTML5 parser. But HTML with no meta information this
may not work an then this argument is helpfull.

	encrypt: Encrypt parameters to build password protection and
encryption.

	signature: Dictionary that pass parameters to signature engine
using pkcs12, pkcs11, simple signatures key managers and
sign Pades with b or ltv signs modes.

Link callback

Images, backgrounds and stylesheets are loaded form an HTML document.
Normally xhtml2pdf expects these files to be found on the local drive.
They may also be referenced relative to the original document. But the
programmer might want to load form different kind of sources like the
Internet via HTTP requests or from a database or anything else.
Therefore you may define a link_callback that handles these requests.

XXX

Web applications

XXX

Defaults

	The name of the first layout template is body, but you better
leave the name empty for defining the default template (XXX May be
changed in the future!)

Fonts

By default there is just a certain set of fonts available for PDF. Here
is the complete list - and their repective alias names - xhtml2pdf
knows by default (the names are not case sensitive):

	Times-Roman: Times New Roman, Times, Georgia, serif

	Helvetica: Arial, Verdana, Geneva, sansserif, sans

	Courier: Courier New, monospace, monospaced, mono

	ZapfDingbats

	Symbol

Asian Fonts Support

Now some Asian fonts are available by default for PDF. The names are not case sensitive.

Simplified Chinese:

	STSong-Light

Traditional Chinese:

	MSung-Light

Japanese:

	HeiseiMin-W3

	HeiseiKakuGo-W5

Korean:

	HYSMyeongJo-Medium

	HYGothic-Medium

Just use them in the font-family property in your CSS definition.

<style>
p { font-family: STSong-Light }
</style>

If you need another font, you may have a look at the “Using Custom Fonts” section.

Arabic / Hebrew / Persian etc. Fonts Support

If you are using a language with right-to-left writing you need to specify the language name in the <pdf:language name=""/> custom tag. This is necessary to ensure the correct direction (right to left).

The following attributes for right-to-left languages are supported and tested:

	name="arabic"

	name="hebrew"

	name="persian"

	name="urdu"

	name="pashto"

	name="sindhi"

Usage example:

<pdf:language name="arabic"/>

<p>Some Arabic text here</p>
<p>Some English text here</p>

The Arabic letters will render from right to left, while all other Latin letters will keep their left-to-right direction.

Warning

Right now it seems like right-to-left support isn’t working while using a default font-family like p { font-family: Times-Roman }. We’re working on fixing this. However, it works by using the @font-face tag in the CSS definition and defining a custom font. Therefore you need the specified font file. “MarkaziText” for example seems to work. It can be downloaded for free here: https://fonts.google.com/specimen/Markazi+Text Other fonts might work as well but haven’t been tested.

<style>
 @font-face {font-family: MyRightToLeftFont; src: url('path\to\the\font\file\MarkaziText-Regular.ttf')}

 p { font-family: MyRightToLeftFont }
</style>

Using Custom Fonts

You may also embed a new font by using the @font-face
keyword in CSS like this:

@font-face {
 font-family: Example, "Example Font";
 src: url('example.ttf');
}

The font-family property defines the names under which the embedded
font will be known. src defines the place of the fonts source file.
This can be a TrueType font or a Postscript font. The file name of the
first has to end with .ttf the latter with one of .pfb or
.afm. For Postscript fonts pass just one filename like
<name>.afm or <name>.pfb, the missing one will be
calculated automatically.

To define other shapes you can do the following:

/* Normal */
@font-face {
 font-family: DejaMono;
 src: url('font/DejaVuSansMono.ttf');
}

/* Bold */
@font-face {
 font-family: DejaMono;
 src: url('font/DejaVuSansMono-Bold.ttf');
 font-weight: bold;
}

/* Italic */
@font-face {
 font-family: DejaMono;
 src: url('font/DejaVuSansMono-Oblique.ttf');
 font-style: italic;
}

/* Bold and italic */
@font-face {
 font-family: DejaMono;
 src: url('font/DejaVuSansMono-BoldOblique.ttf');
 font-weight: bold;
 font-style: italic;
}

Using TFF files with the same face-name

In specific situations we have to use .ttf files with the same face name,
but working with these kind of files makes us deal with some issues. To
avoid it you have to add # at the beginning of the font-family name.
Please check the following example:

/* put in quotes and add # at the beginning */
@font-face {
 font-family: '#MY';
 src: url('font/Microsoft YaHei.ttf')
}

Outlines/ Bookmarks

PDF supports outlines (Adobe calls them “bookmarks”). By default
xhtml2pdf defines the <h1> to <h6> tags to be shown in the
outline. But you can specify exactly for every tag which outline
behaviour it should have. Therefore you may want to use the following
vendor specific styles:

		-pdf-outline
	set it to “true” if the block element should appear in the outline

		-pdf-outline-level
	set the value starting with “0” for the level on which the outline
should appear. Missing predecessors are inserted automatically with
the same name as the current outline

	-pdf-outline-open
set to “true” if the outline should be shown uncollapsed

Example:

h1 {
 -pdf-outline: true; -pdf-level: 0;
 -pdf-open: false;
}

Table of Contents

It is possible to automatically generate a Table of Contents (TOC) with
xhtml2pdf. By default all headings from <h1> to <h6> will be
inserted into that TOC. But you may change that behaviour by setting the
CSS property -pdf-outline to true or false. To generate the
TOC simply insert <pdf:toc /> into your document. You then may
modify the look of it by defining styles for the pdf:toc tag and the
classes pdftoc.pdftoclevel0 to pdftoc.pdftoclevel5. Here is a
simple example for a nice looking CSS:

pdftoc {
 color: #666;
}
pdftoc.pdftoclevel0 {
 font-weight: bold;
 margin-top: 0.5em;
}
pdftoc.pdftoclevel1 {
 margin-left: 1em;
}
pdftoc.pdftoclevel2 {
 margin-left: 2em;
 font-style: italic;
}

Tables

Tables are supported but may behave a little different to the way you
might expect them to do. These restriction are due to the underlying
table mechanism of ReportLab.

	The main restriction is that table cells that are longer than one
page lead to an error

	Tables can not float left or right and can not be inlined

Long cells

xhtml2pdf is not able to split table cells that are larger than the available
space. To work around it you may define what should happen in this case.
The -pdf-keep-in-frame-mode can be one of: “error”, “overflow”,
“shrink”, “truncate”, where “shrink” is the default value.

table { -pdf-keep-in-frame-mode: shrink;}

Cell widths

The table renderer is not able to adjust the width of the table
automatically. Therefore you should explicitly set the width of the
table and to the table rows or cells.

Headers

It is possible to repeat table rows if a page break occurs within a
table. The number of repeated rows is passed in the property
repeat. Example:

<table repeat="1">
 <tr><th>Column 1</th><th>...</th></tr>
 ...
</table>

Borders

Borders are supported. Use corresponding CSS styles.

Images

Size

By default JPG images are supported. If the Python Imaging Library (PIL)
is installed the file types supported by it are available too. As
mapping pixels to points is not trivial the images may appear bigger in
the PDF as in the browser. To adjust this you may want to use the
zoom style. Here is a small example:

img { zoom: 80%; }

Position/ floating

Since Reportlab Toolkit does not yet support the use of images within
paragraphs, images are always rendered in a seperate paragraph.
Therefore floating is not available yet.

Barcodes

You can embed barcodes automatically in a document. Various barcode
formats are supported through the type property. If you want the
original barcode text to be appeared on the document, simply add
humanreadable="1", otherwise simply omit this property. Some barcode
formats have a checksum as an option and it will be on by default, set
checksum="0" to override.
Alignment
is achieved through align property and available values are any of
"baseline", "top", "middle", "bottom" whereas default is
baseline. Finally, bar width and height can be controlled through
barwidth and barheight properties respectively.

<pdf:barcode value="BARCODE TEXT COMES HERE" type="code128" humanreadable="1" align="right" />

Custom Tags

xhtml2pdf provides some custom tags. They are all prefixed by the
namespace identifier pdf:. As the HTML5 parser used by xhtml2pdf
does not know about these specific tags it may be confused if they are
without a block. To avoid problems you may condsider sourrounding them
by <div> tags, like this:

<div>
 <pdf:toc />
</div>

Tag-Definitions

pdf:barcode

Creates a barcode.

pdf:pagenumber

Prints current page number. The argument “example” defines the space the
page number will require e.g. “00”.

pdf:pagecount

Prints total page count.

pdf:nexttemplate

Defines the template to be used on the next page. The name of the
template is passed via the name property and refers to a
@page templateName style definition:

<pdf:nexttemplate name="templateName">

pdf:nextpage

Create a new page after this position.

pdf:nextframe

Jump to next unused frame on the same page or to the first on a new
page. You may not jump to a named frame.

pdf:spacer

Creates an object of a specific size.

pdf:toc

Creates a Table of Contents.

pdf:language

Used for languages with right-to-left writing like Arabic, Hebrew, Persion etc. Right-to-left writing can be defined by passing the name via the name="" property.

<pdf:language name="arabic"/>

 Previous
 Next

 © Copyright 2023, xhtml2pdf.
 Revision 5f4ac77d.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable
	v0.2.7

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

